Rules of Exponents

Key Points:

• Products of exponential expressions with the same base can be simplified by adding exponents.

$$a^m.a^n = a^{m+n}$$

• Quotients of exponential expressions with the same base can be simplified by subtracting exponents.

$$\frac{a^m}{a^n} = a^{m-n}$$

• Powers of exponential expressions with the same base can be simplified by multiplying exponents.

$$(a^m)^n = a^{m.n}$$

• An expression with exponent zero is defined as 1.

$$a^{0} = 1$$

• An expression with a negative exponent is defined as a reciprocal.

$$a^{-n} = \frac{1}{a^n}$$

 The power of a product of factors is the same as the product of the powers of the same factors.

$$(a.b)^n = a^n.b^n$$

• The power of a quotient of factors is the same as the quotient of the powers of the same factors.

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

 Radicals can be rewritten as rational exponents and rational exponents can be rewritten as radicals; the properties of exponents apply to rational exponents.

$$a^{1/n} = \sqrt[n]{a}$$

$$a^{m/n} = \left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}$$

Rules of Exponents Videos

- The Product Rule of Exponents
- The Quotient Rule of Exponents
- The Power Rule of Exponents
- The Zero Exponent Rule of Exponents
- The Negative Rule of Exponents
- The Power of a Product Rule of Exponents
- The Power of a Quotient Rule of Exponents
- Simplifying Exponential Expression (combing rules)

Practice Exercises

Simplify each expression and write the answer with positive exponent only:

1.
$$2^2 \cdot 2^4$$

2.
$$\frac{4^5}{4^3}$$

$$3. \qquad \left(\frac{a^2}{b^3}\right)^4$$

4.
$$\frac{6a^2.a^0}{2a^{-4}}$$

$$5. \qquad \frac{(xy)^4}{y^3} \cdot \frac{2}{x^5}$$

$$6. \frac{4^{-2} \cdot x^3 \cdot y^{-3}}{2x^0}$$

$$7. \qquad \left(\frac{2x^2}{y}\right)^{-2}$$

8.
$$\left(\frac{16a^3}{b^2}\right) \cdot (4ab^{-1})^{-2}$$

Answers:

1. 64

2. 16

3. $\frac{a^8}{b^{12}}$

4. $3a^6$

5. $\frac{2y}{x}$

 $6. \qquad \frac{x^3}{32y^3}$

 $7. \qquad \frac{y^2}{4x^4}$

8. *a*